323 research outputs found

    Exploring Cognitive States: Methods for Detecting Physiological Temporal Fingerprints

    Get PDF
    Cognitive state detection and its relationship to observable physiologically telemetry has been utilized for many human-machine and human-cybernetic applications. This paper aims at understanding and addressing if there are unique psychophysiological patterns over time, a physiological temporal fingerprint, that is associated with specific cognitive states. This preliminary work involves commercial airline pilots completing experimental benchmark task inductions of three cognitive states: 1) Channelized Attention (CA); 2) High Workload (HW); and 3) Low Workload (LW). We approach this objective by modeling these "fingerprints" through the use of Hidden Markov Models and Entropy analysis to evaluate if the transitions over time are complex or rhythmic/predictable by nature. Our results indicate that cognitive states do have unique complexity of physiological sequences that are statistically different from other cognitive states. More specifically, CA has a significantly higher temporal psychophysiological complexity than HW and LW in EEG and ECG telemetry signals. With regards to respiration telemetry, CA has a lower temporal psychophysiological complexity than HW and LW. Through our preliminary work, addressing this unique underpinning can inform whether these underlying dynamics can be utilized to understand how humans transition between cognitive states and for improved detection of cognitive states

    Image-guided liver surgery: intraoperative projection of computed tomography images utilizing tracked ultrasound

    Get PDF
    AbstractBackgroundUltrasound (US) is the most commonly used form of image guidance during liver surgery. However, the use of navigation systems that incorporate instrument tracking and three-dimensional visualization of preoperative tomography is increasing. This report describes an initial experience using an image-guidance system with navigated US.MethodsAn image-guidance system was used in a total of 50 open liver procedures to aid in localization and targeting of liver lesions. An optical tracking system was employed to localize surgical instruments. Customized hardware and calibration of the US transducer were required. The results of three procedures are highlighted in order to illustrate specific navigation techniques that proved useful in the broader patient cohort.ResultsOver a 7-month span, the navigation system assisted in completing 21 (42%) of the procedures, and tracked US alone provided additional information required to perform resection or ablation in six procedures (12%). Average registration time during the three illustrative procedures was <1min. Average set-up time was approximately 5min per procedure.ConclusionsThe Explorerâ„¢ Liver guidance system represents novel technology that continues to evolve. This initial experience indicates that image guidance is valuable in certain procedures, specifically in cases in which difficult anatomy or tumour location or echogenicity limit the usefulness of traditional guidance methods

    The Validity of Studies with Line of Business Data: Comment

    Get PDF
    In the March 1985 issue of this Review, George Benston found fault with Federal Trade Commission Line of Business (LB) data generally and singled out for extended criticism thirteen LB data-based papers written by the authors of this comment. Even by the pre-Queensberry rules governing eco- nomic disputation, Benston\u27s article is one- sided and negative. Moreover, it is marred by numerous errors in characterizing our work. We wish to set the record straight

    All-organic and organic-silicon photonic ring micro-resonators

    Get PDF
    Organic electro-optic materials offer exceptional processability (both from solution and the gas phase) that permit fabrication of flexible and conformal device structures and the integration of organic materials with a wide range of disparate materials. In addition, organic electro-optical materials have fundamental response times that are in the terahertz region, and useable electro-optic coefficients that are approaching 300 pm/V (at telecommunication wavelengths). In addition to fabrication by traditional lithographic methods, multiple devices on a single wafer have been fabricated by soft and nano-imprint lithography. In this presentation, we review the fabrication and performance evaluation of a number of all-organic and organic-silicon photonic ring microresonator devices. Both electrical and thermal tuning of devices, including both single and multiple ring micro-resonators, are demonstrated

    The L&E of Intellectual Property – Do we get maximum innovation with the current regime?

    Full text link
    Innovation is crucial to economic growth – the essential path for lifting much of the world population out of dire poverty and for maintaining the living standard of those who already have. To stimulate innovation, the legal system has to support the means through which innovators seek to get rewarded for their efforts. Amongst these means, some, such as the first mover advantage or 'lead time,' are not directly legal; but secrets and intellectual property rights are legal institutions supported for the specific purpose of stimulating innovation. Whilst the protection of secrets has not changed very much over recent years, intellectual property (or IP) has. IP borrows some features from ordinary property rights, but is also distinct, in that, unlike physical goods, information, the object of IP, is not inherently scarce; indeed as information and communication technologies expand, the creation and distribution of information is becoming ever cheaper and in many circumstances abundant, so that selection is of the essence ('on the internet, point of view is everything'). Where rights on information extend too far, their monopolising effect may hamper innovation. The paper investigates the underlying structure of IP rights and surveys what we know empirically about the incentive effects of IP as about industries that flourish without formal IP

    Antenna-Coupled Millimeter-Wave Electro-optic Modulators for 20 to 100 GHz

    Get PDF
    Coupling the signal to the electrodes of an integrated electro-optical modulator with an array of antennas is used to velocity-match the modulation and optical waves, greatly extending-the length-to-modulation frequency product of the modulator. In addition, antenna coupling eliminates the parasitic elements associated with coax connectors, matching transformers and bond wires. This paper summarizes the results obtained to date with this technique at 20 to 100 GHz, with phase modulators, Mach-Zehnder modulators, and delta-beta directional coupler modulators
    • …
    corecore